Recent Posts

Pages: 1 [2] 3 4 ... 10
Open a Discussion / Recovered: 'Space debris EU-ESA agreement'
« Last post by Matt Wilkinson on June 14, 2019, 02:17:24 PM »
Good morning.
How is it going to affect our community this new in relation with space debris applications?

We are designing our new station in order to be compatible with space debris activities in the future if it is necessary.
In-Sky Safety / Re: FLARM
« Last post by Matt Wilkinson on June 14, 2019, 02:16:25 PM »
Recovered Post:

The TRX-1500 FLARM rx is not available any more. Another good option, the one we already acquired, is the AT-1 receiver (it is the TRX-1500 successor).
In-Sky Safety / Re: On telescope camera for plane spotting
« Last post by Matt Wilkinson on June 14, 2019, 02:15:56 PM »
Recovered post:

Good morning.
We are currently defining our Telescope system (our plan is to buy it this year). It is really interesting your work related with the optical camera for aircraft security. So we will have it into consideration for our system (in addition with ads-b, flarm, all-sky camera, directional microphone...).
Best regards.
Dear Laser Tracking Colleagues,

G'Day from Tokyo.

In the 21st International Workshop on Laser Ranging (conference site:, proceedings site:, I presented station-by-station performance charts (printed on 1-metre-long sheets) during the Clinic Session 3 co-hosted with Jose Rodriguez.  Here are the short summary of the analysis and the links to the charts.

Period: July 2017 to June 2018.
29 Stations with > 200 LAGEOS passes in the 1 year span.
More details about the analysis: See

Unlike the previous years' ones, this year's charts are organised PER STATION.  Matrix charts are also provided (printed on the reservse side) to help investigate the cause.

The first part contains:
  Residual wrt Range rate (negative in ascending (first) half, and positive in descending (second) half of a pass)
  Residual wrt Local time (defined by the station longitude, slightly different from the local standard time)
  Residual wrt Range rate (as specified in normal point data)
  Residual wrt Single-shot RMS (as specified in normal point data)
  Residual wrt Skew (as specified in normal point data)
  Residual wrt Kurtosis (as specified in normal point data)
  Residual wrt System delay (1), (2),.. (per system delay 'group')
  System delay (all sat) (including calibration data for other satellites not included in this analysis)
  System delay (A), (B), ... (vertical scale magnified as above)
  Calibration interval (cumulative) (typical calbration interval is at median (50%))

The matrix chart (second  part) labels, top-to-botumn = left-toright,  mean:
  Mon 17: Months from January 2017 (13 for January 2018)
  Hour: Local time
  # ret: Number of returns per NP bin
  Return rate
  RMS: Single-shot RMS
  Kurt: Kurtosis
  Range rate
  System delay (1), (2), ...
  O-C: POD residuals
7090 (Yarragadee),
7941 (Matera),
7825 (Mt Strolmo),
7237 (Changchun),
7105 (Greenbelt),
7810 (Zimmerwald),
7840 (Herstmonceux),
7110 (Monument Peak),
7501 (Hartebeesthoek),
7841 (Potsdam),
7821 (Shanghai),
8834 (Wettzell),
7839 (Graz),
7119 (Haleakala),
7819 (Kunming),
1887 (Baikonur),
7838 (Shimosato),
7249 (Beijing),
7827 (Wettzell),
7407 (Brasilia),
1873 (Simeiz),
1879 (Altay),
7845 (Grasse),
1893 (Katzively),
1891 (Irkutsk),
1868 (Komsomolsk-na-Amure),
1889 (Zelenchukskya),
1886 (Arkhyz),
7811 (Borowiec),

Best Regards,

Today, while writing my own CRD-parsing python3 code, I felt a little bit wheel-reinventing

Since the new CRD/CPF format is going to release at the Canberra meeting, I guess it's time to think about our new CRD2.0 python library?
It should have following functions: verify the CRD2.0 format, extract data, etc.

I found in GitHub the CRD/CPF library from Olli Wilkman:

Could be a good start.
Recover Post:

Hi Arttu

Water spraying over the laser electronics doesn't sound like fun!  :o

We run a Lauda E100 at the SGF. When we had temperature variation problems it wasn't  the water cooler temperature that was unstable it was the temperature control of the amp. That temperature control system became unstable as the water flow around it had become very low, sounds similar to your problem but not so bad.

The fix was to add a bottle of Durgol Universal Descaler, as recommended by Michael Schmidt, to the water and run it for 2+ hours. This restored the water flow rate meaning the amp temperature control could work as intended again so no more temperature variation to cause the range variation we'd seen.

We have run the same Lauda water cooler continuously since the arrival of our kHz laser so 10+ years. I have replaced the fan motor 2 or 3 times though, it's not impossible to get to but access is tricky.

The water cooler has always been set at 20°. We don't run a filter on the outlet as Michael told us to remove it, we also stopped using OptiShield on his advice. We have always changed the water at least once a year. Micheal now recommends changing the water and flushing the system with Durgol every 6 months.

The last time I changed the water I added a bottle of Durgol before draining the old water and noticed an obvious improvement in water flow, despite having used Durgol at previous changes. It appears it doesn't take long for the limescale build up inside the laser waterways to have a noticeable effect on flow rate.

Recovered Post:

Hi Arttu,
in Graz we are using (since delivery of the laser) a Lauda chiller. LAUDA ecoline RE110
Cooling power @20° = 500W; Heating power = 1500W;
We have a filter of 100µm at the output (renewing once a year). And we changed the position of the temperature sensor from internal (chiller reservoir) to the output tube of the laser for having shorter warm up times. As a “descaler” we are adding OptiShield to the distilled water. This mixture we are renewing around every 5 to 10 years but we have to add around half a litre of distilled water every week. (losing a lot ??) By the way, beside some very short service periods, we never switched the HQ-Laser system off.
Greetings, Franz
Recovered post:

I have a question especially for HighQ laser users (Matt, Sven, Franz et al.), what chiller are you using? Do you have some model from Lauda, with what specifications (cooling power, temperature stability; @Matt: how big deviations in temperature you had when you noticed the calibration changes?) We need to get a new one to replace our >10 year old Lauda in Metsähovi with a new one, and I'm trying to find the "best" option suited for our needs.

The backround is: we run into problems with the water cooling unit as we are not using our laser that much... even though the chiller has been on most of the idle time (and we have changed the water every once in a while), there was a major blockage inside the post amp. I had to use quite a lot of brute force, nasty chemicals and sharp tools to get the blockage open. Finally after this, everything went fine for some time until suddenly the water connector on the backside of the HighQ post amp analog modules broke down spraying the water all over the laser controller rack. Fortunately pretty much all of the electronics were shut down and everything seems to still work. Now finally the fan inside the cooling unit has stopped working (probably the motor is broken, pretty much impossible to replace) and the unit burnt two fuses while I was trying to operate the laser.

Lesson learned: be cautious and suspicious if you have water hoses connected on top of your electronics rack. Apparently it is the initial design from HighQ, seems that the connector was tightened too hard which had cracked the connector.

Dear Jose,

I didn't check the forum for a while, however I made a comparison between the formula I found on some Arnold's papers and the one I was using, here are the results:

Peak           Arnold     my simulation
1-2            28.9680   24.9776
1-3          110.7177   95.8031
1-4          243.2109  211.6056
1-5          423.1052  370.6967

the new value seems to reproduce correctly the data from RETRO. Now I'll try to see what can I do on the peak intensities.

Thanks again

Station Equipment Questions / Re: Meteorological station
« Last post by serna_yebes on July 20, 2018, 08:00:48 AM »
Good morning Jorge, and thank you very much for your comments.
I need to verify the current sampling rate of the meteo station at Yebes.
The local microclimate is not also a problem here, as I told you the meteo station is about 60 meters from the planned SLR location. And yes, it has an anemometer. We will use the info from the anemometer (jointly with the rain on/off detector) to control the dome in case of risk.
We are buying a good all-sky camera and a rain detector to be installed in the SLR roof. We will buy also a cloud detector.
So I think we will install, in the SLR station optimum position, a new meteo station (JUST pressure, temp and RH) and share the other data from the meteo station in the observatory. This way we´ll also have redundant info from the barometers.

Pages: 1 [2] 3 4 ... 10